Abstract

This paper reports a continuous development of the work by the authors presented at IJCNN 2005 & 2007 [1, 2]. A series of parsimonious universal approximator architectures with pre-defined values for weights and biases called “neural network prototypes” are proposed and used in a repetitive and systematic manner for the initialization of sigmoidal neural networks in function approximation. This paper provides a more in-depth literature review, presents one training example using laboratory data indicating quick convergence and trained sigmoidal neural networks with stable generalization capability, and discusses the complexity measure in [3, 4]. This study centers on approximating a subset of static nonlinear target functions - mechanical restoring force considered as a function of system states (displacement and velocity) for single-degree-of-freedom systems. We strive for efficient and rigorous constructive methods for sigmoidal neural networks to solve function approximation problems in this engineering mechanics application and beyond. Future work is identified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call