Abstract
Summary While the Metropolis-adjusted Langevin algorithm is a popular and widely used Markov chain Monte Carlo method, very few papers derive conditions that ensure its convergence. In particular, to the authors’ knowledge, assumptions that are both easy to verify and guarantee geometric convergence, are still missing. In this work, we establish V-uniformly geometric convergence for the Metropolis-adjusted Langevin algorithm under mild assumptions about the target distribution. Unlike previous work, we only consider tail and smoothness conditions for the potential associated with the target distribution. These conditions are quite common in the Markov chain Monte Carlo literature. Finally, we pay special attention to the dependence of the bounds we derive on the step size of the Euler–Maruyama discretization, which corresponds to the proposed Markov kernel of the Metropolis-adjusted Langevin algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.