Abstract

Abstract In this paper, we derive a Markov chain Monte Carlo (MCMC) algorithm supported by a neural network. In particular, we use the neural network to substitute derivative calculations made during a Metropolis adjusted Langevin algorithm (MALA) step with inexpensive neural network evaluations. Using a complex, high-dimensional blood coagulation model and a set of measurements, we define a likelihood function on which we evaluate the new MCMC algorithm. The blood coagulation model is a dynamic model, where derivative calculations are expensive and hence limit the efficiency of derivative-based MCMC algorithms. The MALA adaptation greatly reduces the time per iteration, while only slightly affecting the sample quality. We also test the new algorithm on a 2-dimensional example with a non-convex shape, a case where the MALA algorithm has a clear advantage over other state of the art MCMC algorithms. To assess the impact of the new algorithm, we compare the results to previously generated results of the MALA and the random walk Metropolis Hastings (RWMH).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.