Abstract

In this paper, we propose a general procedure for establishing the geometric landscape connections of a Riemannian optimization problem under the embedded and quotient geometries. By applying the general procedure to the fixed-rank positive semidefinite (PSD) and general matrix optimization, we establish an exact Riemannian gradient connection under two geometries at every point on the manifold and sandwich inequalities between the spectra of Riemannian Hessians at Riemannian first-order stationary points (FOSPs). These results immediately imply an equivalence on the sets of Riemannian FOSPs, Riemannian second-order stationary points (SOSPs), and strict saddles of fixed-rank matrix optimization under the embedded and the quotient geometries. To the best of our knowledge, this is the first geometric landscape connection between the embedded and the quotient geometries for fixed-rank matrix optimization, and it provides a concrete example of how these two geometries are connected in Riemannian optimization. In addition, the effects of the Riemannian metric and quotient structure on the landscape connection are discussed. We also observe an algorithmic connection between two geometries with some specific Riemannian metrics in fixed-rank matrix optimization: there is an equivalence between gradient flows under two geometries with shared spectra of Riemannian Hessians. A number of novel ideas and technical ingredients—including a unified treatment for different Riemannian metrics, novel metrics for the Stiefel manifold, and new horizontal space representations under quotient geometries—are developed to obtain our results. The results in this paper deepen our understanding of geometric and algorithmic connections of Riemannian optimization under different Riemannian geometries and provide a few new theoretical insights to unanswered questions in the literature. Funding: X. Li was partially supported by National Key R&D Program of China [Grants 2020YFA0711900, 2020YFA0711901], the National Natural Science Foundation of China [Grants 12271107, 62141407], the Young Elite Scientists Sponsorship Program by CAST [Grant 2019QNRC001], the “Chenguang Program” by the Shanghai Education Development Foundation and Shanghai Municipal Education Commission [Grant 19CG02], the Shanghai Science and Technology Program [21JC1400600]. Y. Luo and A. R. Zhang were partially supported by the National Science Foundation [CAREER-2203741].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.