Abstract

A process of generation and convergence of shock waves of arbitrary form and strength in a confined chamber is investigated theoretically. The chamber is a cylinder with a specifically chosen form of boundary. Numerical calculations of reflection and convergence of cylindrical shock waves in such a chamber filled with fluid are performed. The numerical scheme is similar to the numerical procedure introduced by Henshaw et al. (1986) and is based on a modified form of Whitham's theory of geometrical shock dynamics (1957, 1959). The technique used in Whitham (1968) for treating a shock advancing into a uniform flow is modified to account for non-uniform conditions ahead of the advancing wave front. A new result, that shocks of arbitrary polygonal shapes may be generated by reflection of cylindrical shocks off a suitably chosen reflecting boundary, is shown. A study is performed showing the evolution of the shock front's shape and Mach number distribution. Comparisons are made with a theory which does not account for the non-uniform conditions in front of the shock. The calculations provide details of both the reflection process and the shock focusing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.