Abstract

We prove a Hardy inequality on convex sets, for fractional Sobolev-Slobodecki\u{\i} spaces of order $(s,p)$. The proof is based on the fact that in a convex set the distance from the boundary is a superharmonic function, in a suitable sense. The result holds for every $1<p<\infty$ and $0<s<1$, with a constant which is stable as $s$ goes to $1$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.