Abstract

We study the spectral theory for the first-order system Ju′+qu=wf of differential equations on the real interval (a,b) where J is a constant, invertible, skew-hermitian matrix and q and w are matrices whose entries are distributions of order 0 with q hermitian and w non-negative. Specifically, we construct a generalized Weyl-Titchmarsh m-function with corresponding spectral measure τ and a generalized Fourier transform after imposing certain conditions on J, q, and w. Different conditions are motivated and studied in the later sections. A Fatou-type identity needed for our result is recorded in the appendix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.