Abstract
Nowadays the introduction of energy marketplaces in several countries pushed the development of machine learning approaches for devising effective predictions about both energy needs and energy productions. In this paper we address the problem of predicting the amount of electrical power produced using non-renewable sources, as getting an estimate of the amount of electrical power produced using the various kinds of non-renewable sources yields a big competitive advantage for energy market investors. Specifically, we devise a forecasting technique obtained by trying and combining various machine learning techniques which is able to provide energy production estimates with a remarkably low error. Finally, since the input data available for predictions are in general not sufficient to determine the amounts of produced energy for the various source types, we provide an estimate of the impact of unknown latent variable on the amounts of produced energy, by devising a prediction model which is capable of estimating the prediction error for the specific data at hand. These informations can be exploited by investors to get an idea of the risk levels of their investments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.