Abstract
The Jacobian-free Newton–Krylov (JFNK) method is a special kind of Newton–Krylov algorithm, in which the matrix-vector product is approximated by a finite difference scheme. Consequently, it is not necessary to form and store the Jacobian matrix. This can greatly improve the efficiency and enlarge the application area of the Newton–Krylov method. The finite difference scheme has a strong influence on the accuracy and robustness of the JFNK method. In this paper, several methods for approximating the Jacobian-vector product, including the finite difference scheme and the finite difference step size, are analyzed and compared. Numerical results are given to verify the effectiveness of different finite difference methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.