Abstract
In solving multi-objective optimization problems, evolutionary algorithms have been adequately applied to demonstrate that multiple and well-spread Pareto-optimal solutions can be found in a single simulation run. In this paper, we discuss and put together various different classical generating methods which are either quite well-known or are in oblivion due to publication in less accessible journals and some of which were even suggested before the inception of evolutionary methodologies. These generating methods specialize either in finding multiple Pareto-optimal solutions in a single simulation run or specialize in maintaining a good diversity by systematically solving a number of scalarizing problems. Most classical generating methodologies are classified into four groups mainly based on their working principles and one representative method from each group is chosen in the present study for a detailed discussion and for its performance comparison with a state-of-the-art evolutionary method. On visual comparisons of the efficient frontiers obtained for a number of two and three-objective test problems, the results bring out interesting insights about the strengths and weaknesses of these approaches. The results should motivate researchers to design hybrid multi-objective optimization algorithms which may be better than each of the individual methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.