Abstract

We obtain many results and solve some problems about feebly compact paratopological groups. We obtain necessary and sufficient conditions for such a group to be topological. One of them is the quasiregularity. We prove that each 2-pseudocompact paratopological group is feebly compact and that each Hausdorff σ-compact feebly compact paratopological group is a compact topological group. Our particular attention concerns periodic and topologically periodic groups. We construct examples of various compact-like paratopological groups which are not topological groups, among them a T0 sequentially compact group, a T1 2-pseudocompact group, a functionally Hausdorff countably compact group (under the axiomatic assumption that there is an infinite torsion-free Abelian countably compact topological group without non-trivial convergent sequences), and a functionally Hausdorff second countable group sequentially pracompact group. We prove that the product of a family of feebly compact paratopological groups is feebly compact, and that a paratopological group G is feebly compact provided it has a feebly compact normal subgroup H such that a quotient group G/H is feebly compact. For our research we also study some general constructions of paratopological groups. We extend the well-known construction of Raĭkov completion of a T0 topological group to the class of paratopological groups. We investigate cone topologies of paratopological groups which provide a general tool for constructing pathological examples, especially examples of compact-like paratopological groups with discontinuous inversion. We find a simple interplay between the algebraic properties of a basic cone subsemigroup S of a group G and compact-like properties of two basic semigroup topologies generated by S on the group G.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.