Abstract

Present work investigates the dynamic response of dry fabric materials subjected to ballistic impact loading. The purpose of this research is to simulate the dynamic fabrics behavior accurately in order to capture the maximum fabric deformation, the ballistic limit and the absorbed energy in case of fabric perforation. In particular, a meso-scale modeling approach was employed to capture the behavior of para-aramid fabrics using LS-DYNA software. The quasi-static mechanical properties of fabric yarns were defined by standard tensile tests, whereas the Johnson-Cook strain rate rule was applied to approximate the strain rate dependence of yarn tensile strength. The numerical results were validated against impact experiments using air-gun apparatus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call