Abstract

We define PSI-process — Poisson Stochastic Index process, as a continuous time random process which is obtained by a manner of a randomization for the discrete time of a random sequence. We consider the case when a double stochastic Poisson process generates this randomization, i. e. such Poisson process has a random intensity. Under condition of existence of the second moment the stationary PSI-processes possess a covariance which coincides with the Laplace transform of the random intensity. In our paper we derive distributions of extremes for a one PSI-process, and these extremes are expressed in terms of Laplace transform of the random intensity. The second task that we solve is a convergence of the maximum of Gaussian limit for normalized sums of i. i. d. stationary PSI-processes. We obtain necessary and sufficient conditions for the intensity under which, after proper centering and normalization, this Gaussian limit converges in distribution to the double Exponential Law. For solution this task we essentially base on the monograph: M.R.Leadbetter, Georg Lindgren, Holder Rootzen (1986) “Extremes and Relative Properties of Random Sequences and Processes”, end essentially use the Tauberian theorem in W. Feller form.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.