Abstract
AbstractThe sliding conveyor consists of a plane surface, known as the track, along which particles are induced to move by vibrating the bed sinusoidal with respect to time. The forces on the particle include gravity, bed reaction force and friction. Because friction coefficients are inherently variable, particle motion along the bed is erratic and unpredictable. A deterministic model of particle motion (where friction is considered to be known and invariant) is selected and its output validated by experiment. Two probabilistic solution techniques are developed and applied to the deterministic model, in order to account for the randomness that is present. The two methods consider particle displacement to be represented by discrete time and continuous time random processes, respectively, and permits analytical solutions for mean and variance in displacement versus time to be found. These are compared with experimental measurements of particle motion. Ultimately this analysis can be employed to calculate residence‐time distributions for such items of process equipment. © 2009 American Institute of Chemical Engineers AIChE J, 2010
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.