Abstract

The two dimensional stagnation point flow of a second grade fluid is considered. The flow is governed by a boundary value problem in which the order of differential equations is one more than the number of available boundary conditions. It is shown that without augmenting the boundary conditions at infinity it is possible to obtain a numerical solution of the problem for all values of K, where K is the dimensionless viscoelastic fluid parameter. The numerical results using the algorithm foreshadow an asymptotic behavior for large K. The asymptotic solution is derived up to terms of O( K −1). Perturbation solutions are also obtained up to the terms of O( K 2). Finally an approximate solution is developed, based on stretching of the independent variable and minimizing the residual of the differential equation in the least square sense. All these solutions are compared with the exact numerical solution and the appropriate conclusions are drawn.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.