Abstract

AbstractA technique combining the features of parameter differentiation and finite differences is presented to compute the flow of viscoelastic fluids. Two flow problems are considered: (i) three‐dimensional flow near a stagnation point and (ii) axisymmetric flow due to stretching of a sheet. Both flows are characterized by a boundary value problem in which the order of the differential equation exceeds the number of boundary conditions. The exact numerical solutions are obtained using the technique described in the paper. Also, the first‐order perturbation solutions (in terms of the viscoelastic fluid parameter) are derived. A comparison of the results shows that the perturbation method is inadequate in predicting some of the vital characteristic features of the flows, which can possibly be revealed only by the exact numerical solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.