Abstract

This work presents some experimental results for resonant nonlinear response of hyperelastic plates for 1:2 internal resonance. Previously developed topology optimization methods are used to design and fabricate candidate resonant plates using 3-D printing. One such plate is subjected to harmonic transverse excitation with increasing amplitudes in a frequency range where 1:2 internal resonances are expected to be activated. While the fabricated structure exhibits coupled mode internal resonance activated response when subjected to higher levels of excitation, the plate also displays other interesting nonlinear behavior. These include nonlinear periodic as well as amplitude modulated motions of the directly excited mode and these motions super-imposed on the coupled mode response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.