Abstract

This paper investigates the influence exerted by small surface tension on the nonlinear normal sloshing modes of a two-dimensional irrotational, incompressible fluid in a rectangular container. To this end, the influence of surface tension on the modal frequencies is investigated by assuming pure slipping at the contact line and a 90 deg contact angle between the fluid surface and the walls. The regions of possible nonlinear internal resonances up to the fifth mode are highlighted. Away from the highlighted regions, the influence of surface tension on the effective nonlinearity of the lowest four modes is studied and used to shed light onto its effect on the softening/hardening behavior of the uncoupled nonlinear modes. Subsequently, the response of the sloshing waves near two-to-one internal resonances is studied. It is shown that, in the vicinity of such internal resonance, the steady-state sloshing response can either contain a contribution from the two interacting modes (coupled-mode response) or only the high-frequency mode (high-frequency uncoupled mode response). The regions where the coupled mode uniquely exists are shown to depend on the surface tension. Moreover, it is demonstrated that such regions may be underestimated considerably when neglecting the influence of the cubic nonlinearities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.