Abstract
Moment-based sufficient dimension reduction methods such as sliced inverse regression may not work well in the presence of heteroscedasticity. We propose to first estimate the expectiles through kernel expectile regression, and then carry out dimension reduction based on random projections of the regression expectiles. Several popular inverse regression methods in the literature are extended under this general framework. The proposed expectile-assisted methods outperform existing moment-based dimension reduction methods in both numerical studies and an analysis of the Big Mac data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.