Abstract

Every A 1 \mathbb {A}^{1} -bundle over A ∗ 2 , \mathbb {A}_{\ast }^{2}, the complex affine plane punctured at the origin, is trivial in the differentiable category, but there are infinitely many distinct isomorphy classes of algebraic bundles. Isomorphy types of total spaces of such algebraic bundles are considered; in particular, the complex affine 3 3 -sphere S C 3 , \mathbb {S}_{\mathbb {C}}^{3}, given by z 1 2 + z 2 2 + z 3 2 + z 4 2 = 1 , z_{1}^{2}+z_{2}^{2}+z_{3}^{2}+z_{4}^{2}=1, admits such a structure with an additional homogeneity property. Total spaces of nontrivial homogeneous A 1 \mathbb {A}^{1} -bundles over A ∗ 2 \mathbb {A}_{\ast }^{2} are classified up to G m \mathbb {G}_{m} -equivariant algebraic isomorphism, and a criterion for nonisomorphy is given. In fact S C 3 \mathbb {S}_{\mathbb {C}}^{3} is not isomorphic as an abstract variety to the total space of any A 1 \mathbb {A}^{1} -bundle over A ∗ 2 \mathbb {A}_{\ast }^{2} of different homogeneous degree, which gives rise to the existence of exotic spheres, a phenomenon that first arises in dimension three. As a byproduct, an example is given of two biholomorphic but not algebraically isomorphic threefolds, both with a trivial Makar-Limanov invariant, and with isomorphic cylinders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.