Abstract
This paper considers the asymptotic behavior of the strong solution of the linear partial stochastic differential Ito–Skorokhod equation in the corresponding space with random parameters. An existence of the strong solution is proved and sufficient conditions for the asymptotic stability and the mean square instability of a strong solution of a similar equation are obtained. The stochastic model of complex systems, which is proposed in this paper, is an attempt to take into consideration the full extent of randomness in the studying of real processes, which are described by differential equations in partial derivatives, on the right side of which a diffuse perturbations of the Brownian process type and random perturbations of other types are taken into consideration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.