Abstract
In this study, we address an SIR (susceptible-infected-recovered) model that is given as a system of first order differential equations and propose the SIR model on time scales which unifies and extends continuous and discrete models. More precisely, we derive the exact solution to the SIR model and discuss the asymptotic behavior of the number of susceptibles and infectives. Next, we introduce an SIS (susceptible-infected-susceptible) model on time scales and find the exact solution. We solve the models by using the Bernoulli equation on time scales which provides an alternative method to the existing methods. Having the models on time scales also leads to new discrete models. We illustrate our results with examples where the number of infectives in the population is obtained on different time scales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.