Abstract

The bending problem of Euler–Bernoulli discontinuous beams is dealt with. The purpose is to show that uniform-beam Green’s functions can be used to build efficient solutions for beams with internal discontinuities due to along-axis constraints and flexural-stiffness jumps. Specifically, upon deriving the equilibrium equation in the space of generalized functions, first it is seen that the original bending problem may be recast as linear superposition of a principal and an auxiliary bending problem, both involving a uniform reference beam and homogeneous boundary conditions. Then, based on the Green’s functions of the reference beam, closed-form solutions are developed for the principal beam response, while the auxiliary beam response is obtained by solving, in general, ( r + 2 s) algebraic equations written at the discontinuity locations, being r the number of discontinuities due to along-axis constraints, and s the number of flexural-stiffness jumps. In this manner, an appreciable reduction of computational effort is achieved as compared to alternative analytical solutions in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.