Abstract

Further development of local volume displacement sensors is presented. This development supports the implementation of noise control techniques that are based on minimization of local volume displacements, velocities, or accelerations of a vibrating structure. In this paper, we present a general methodology for the development of local volume displacement sensors for vibrating beams using P_olyV_inyliD_ene F_luoride (PVDF). This methodology was verified experimentally for a clamped beam. The local volume displacement measured using a single PVDF sensor matched the local volume displacement found using multiple accelerometer measurements. The resulting sensors span the entire length of the beam. They have a quadratic shape over that portion of the beam whose volume displacement is desired, and they have a linear shape over all other sections. Sensor design issues for different beam boundary conditions are discussed along with a presentation of some sample sensor shapes for various beam segments and boundary conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call