Abstract

Combinatorial batch codes were defined by Paterson, Stinson, and Wei as purely combinatorial versions of the batch codes introduced by Ishai, Kushilevitz, Ostrovsky, and Sahai. There are $n$ items and $m$ servers, each of which stores a subset of the items. A batch code is an arrangement for storing items on servers so that, for prescribed integers $k$ and $t$, any $k$ items can be retrieved by reading at most $t$ items from each server. Silberstein defined an erasure batch code (with redundancy $r$) as a batch code in which any $k$ items can be retrieved by reading at most $t$ items from each server, while any $r$ servers are unavailable (failed). In this paper, we investigate erasure batch codes with $t=1$ (each server can read at most one item) in a combinatorial manner. We determine the optimal (minimum) total storage of an erasure batch code for several ranges of parameters. Additionally, we relate optimal erasure batch codes to maximum packings. We also identify a necessary lower bound for the total storage of an erasure batch code, and we relate parameters for which this trivial lower bound is achieved to the existence of graphs with appropriate girth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.