Abstract
Abstract In this paper, we derive statistical selection procedures to partition k normal populations into ‘good’ or ‘bad’ ones, respectively, using the nonparametric empirical Bayes approach. The relative regret risk of a selection procedure is used as a measure of its performance. We establish the asymptotic optimality of the proposed empirical Bayes selection procedures and investigate the associated rates of convergence. Under a very mild condition, the proposed empirical Bayes selection procedures are shown to have rates of convergence of order close to O(k−1/2) where k is the number of populations involved in the selection problem. With further strong assumptions, the empirical Bayes selection procedures have rates of convergence of order O(k−α(r−1)/(2r+1)), where 1
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.