Abstract

Lightweight Elliptic Curve Cryptography (ECC) is a critical component for constructing the security system of Internet of Things (IoT). In this paper, we define an emerging family of lightweight elliptic curves to meet the requirements on some resource-constrained devices. We present the design of a scalable, regular, and highly-optimized ECC library for both MICAz and Tmote Sky nodes, which supports both widely-used key exchange and signature schemes. Our parameterized implementation of elliptic curve group arithmetic supports pseudo-Mersenne prime fields at different security levels with two optimized-specific designs: the high-speed version (HS) and the memory-efficient (ME) version. The former design achieves record times for computation of cryptographic schemes at roughly <inline-formula> <tex-math notation="LaTeX">$80\sim 128$</tex-math></inline-formula> -bit security levels, while the latter implementation only requires half of the code size of the current best implementation. We also describe our efforts to evaluate the energy consumption and harden our library against some basic side-channel attacks, e.g., timing attacks and simple power analysis (SPA) attacks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.