Abstract
This paper aims to enhance the Graphical Set-based model (GSB) for ranking and classification tasks by incorporating node and word embeddings. The model integrates a textual graph representation with a set-based model for information retrieval. Initially, each document in a collection is transformed into a graph representation. The proposed enhancement involves augmenting the edges of these graphs with embeddings, which can be pretrained or generated using Word2Vec and GloVe models. Additionally, an alternative aspect of our proposed model consists of the Node2Vec embedding technique, which is applied to a graph created at the collection level through the extension of the set-based model, providing edges based on the graph’s structural information. Core decomposition is utilized as a method for pruning the graph. As a byproduct of our information retrieval model, we explore text classification techniques based on our approach. Node2Vec embeddings are generated by our graphs and are applied in order to represent the different documents in our collections that have undergone various preprocessing methods. We compare the graph-based embeddings with the Doc2Vec and Word2Vec representations to elaborate on whether our approach can be implemented on topic classification problems. For that reason, we then train popular classifiers on the document embeddings obtained from each model.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have