Abstract
The general relation between Chekhov–Eynard–Orantin topological recursion and the intersection theory on the moduli space of curves, the deformation techniques in topological recursion, and the polynomiality properties with respect to deformation parameters can be combined to derive vanishing relations involving intersection indices of tautological classes. We apply this strategy to three different families of spectral curves and show they give vanishing relations for integrals involving Ω-classes. The first class of vanishing relations are genus-independent and generalises the vanishings found by Johnson–Pandharipande–Tseng [34] and by the authors jointly with Do and Moskovsky [7]. The two other classes of vanishing relations are of a different nature and depend on the genus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.