Abstract
We give elements towards the classification of quantum Airy structures based on the W(\mathfrak{gl}_r) -algebras at self-dual level based on twisted modules of the Heisenberg VOA of \mathfrak{gl}_r for twists by arbitrary elements of the Weyl group \mathfrak{S}_{r} . In particular, we construct a large class of such quantum Airy structures. We show that the system of linear ODEs forming the quantum Airy structure and determining uniquely its partition function is equivalent to a topological recursion à la Chekhov–Eynard–Orantin on singular spectral curves. In particular, our work extends the definition of the Bouchard–Eynard topological recursion (valid for smooth curves) to a large class of singular curves and indicates impossibilities to extend naively the definition to other types of singularities. We also discuss relations to intersection theory on moduli spaces of curves, giving a general ELSV-type representation for the topological recursion amplitudes on smooth curves, and formulate precise conjectures for application in open r -spin intersection theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annales de l’Institut Henri Poincaré D, Combinatorics, Physics and their Interactions
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.