Abstract
The solutions to classical problems of perfectly bonded and sliding circular inhomogeneities in a remotely loaded infinite matrix are constructed by using an appealing choice of dimensionless material parameters that represent the in-plane average normal stress and the maximum shear stress at the center of the inhomogeneity, scaled by the corresponding measures of remote stress. The ovalization of the inhomogeneity and the effects of material parameters on stress concentration are discussed. The range of material parameters is specified for which the inhomogeneity with a perfectly bonded interface can expand in vertical direction under horizontal remote loading. For some combination of material properties, the maximum compressive hoop stress in the matrix along the interface can be larger than the maximum hoop stress around a circular void under tensile remote loading. The strain energies stored in perfectly bonded and sliding inhomogeneities are evaluated and discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have