Abstract

AbstractIn implementation of elliptic curve cryptography, three kinds of finite fields have been widely studied, i.e. prime field, binary field and optimal extension field. In pairing-based cryptography, however, pairing-friendly curves are usually chosen among ordinary curves over prime fields and supersingular curves over extension fields with small characteristics. In this paper, we study pairings on elliptic curves over extension fields from the point of view of accelerating the Miller’s algorithm to present further advantage of pairing-friendly curves over extension fields, not relying on the much faster field arithmetic. We propose new pairings on elliptic curves over extension fields can make better use of the multi-pairing technique for the efficient implementation. By using some implementation skills, our new pairings could be implemented much more efficiently than the optimal ate pairing and the optimal twisted ate pairing on elliptic curves over extension fields. At last, we use the similar method to give more efficient pairings on Estibals’s supersingular curves over composite extension fields in parallel implementation.Keywordspairingelliptic curve over extension fieldmulti-pairing technique

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.