Abstract
Zero slope regression is an important problem in chemometrics, ranging from challenges of intercept-bias and slope ‘corrections’ in spectrometry, up to analysis of administrative data on chemical pollution in water in the region of Arica and Parinacota. Such issue is really complex and it integrates problems of optimal design, symmetry of errors, stabilization of the variability of estimators, dynamical system for errors up to an administrative data challenges. In this article we introduce a realistic approach to zero slope regression problem from dynamical point of view. Linear regression is a widely used approach for data fitting under assumption of normally distributed residuals. Many times non-normal residuals are observed and also theoretically justified. Our solution to such problem uses the recently introduced inference function called score function of distribution. As a minimization criterion, the minimum information of residuals criterion is used. The score regression appears to be a direct generalization of the least-squares regression for an arbitrary known (believed) distribution of residuals. The score estimation is also distribution sensitive version of M-estimation. The capability of the method is demonstrated by water pollution data examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.