Abstract
The existing methods for urban water pollution prediction have some problems, such as large prediction error and inconsistency with the actual pollution situation. A new urban water pollution prediction method is proposed. The water pollution data collection system of mobile GIS is used to collect urban water pollution data, analyse the overall structure of the water pollution data collection system, and classify the obtained urban water pollution data at different levels. The application concept of BP neural network is clarified, and the obtained urban water pollution data is entered into the network to obtain the urban water pollution prediction results. Genetic algorithm is used to improve the weights and thresholds obtained above, and the urban water pollution prediction model is constructed, and the prediction results of urban water pollution are output. Through the effective experimental analysis, it is concluded that the minimum error value is about 0.1%, and the prediction time is consistent with the actual time consumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Environmental Technology and Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.