Abstract
The linear structure of the Lorentz-Minkowski plane is almost the same as Euclidean plane. But, there is one different aspect. These planes have different distance functions. So, it can be interesting to study the Lorentz analogues of topics that include the distance concept in the Euclidean plane. Thus, in this study, we show that the relationship between Euclidean and Lorentz distances is given depending on the slope of the line segment. Following, we investigate Lorentz analogues of Thales’ theorem, Angle Bisector theorems, Menelaus’ theorem and Ceva’s theorem.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have