Abstract

Oscillation is a phenomenon very commonly observed in systems, ranging from simple ones to complex distributed network. Several techniques have been proposed in the literature for detecting oscillations to study their importance in domains ranging from physiology to climate studies. However, there is a lack of a common framework accommodative of important features of data such as non-stationarity, intermittent oscillations, measurement noise, multimodal oscillations, and the like. In this article, we outline a framework that addresses these challenges, the results of which can then be analyzed along with appropriate knowledge about the underlying system. We present results of an extensive simulation study that establishes the robustness and reliability of the proposed technique and demonstrate its applicability to real datasets in climate and in industrial datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.