Abstract
ABSTRACTWe consider the problem of estimation of a density function in the presence of incomplete data and study the Hellinger distance between our proposed estimators and the true density function. Here, the presence of incomplete data is handled by utilizing a Horvitz–Thompson-type inverse weighting approach, where the weights are the estimates of the unknown selection probabilities. We also address the problem of estimation of a regression function with incomplete data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.