Abstract

Research on water flow resistance characteristics in a vegetation environment is a hotspot in environmental fluid research, which is primarily concentrated on the calculation of the vegetation drag coefficient Cd. At present, relatively few studies exist on the resistance characteristics of vegetation under non-uniform flow conditions, resulting in few general expressions for the research of Cd for this type of condition. In response to these scientific problems, this study selects shrub vegetation as the research object and generalised it as cylinders for the simulation study. This study adopts quadraticand Gaussian functions to change the coordinate expression of cylindrical vegetation Cd and then proposes the drag formulas of cylindrical vegetation in non-uniform flow for non-rainfall and heavy rainfall conditions based on regression analysis. Finally, this study substitutes the proposed Cd formula into the Saint-Venant equation to calculate the depth of channel flow. The newly proposed equations are verified by comparing the measured flow depth data with the calculation results. This study provides technical support for refined hydrodynamic simulations of vegetated flow regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call