Abstract
In this paper we study the probability that a $d$ dimensional simple random walk (or the first $L$ steps of it) covers each point in a nearest neighbor path connecting 0 and the boundary of an $L_{1}$ ball. We show that among all such paths, the one that maximizes the covering probability is the monotonic increasing one that stays within distance 1 from the diagonal. As a result, we can obtain an exponential upper bound on the decaying rate of covering probability of any such path when $d\geq 4$. The main tool is a general combinatorial inequality, that is interesting in its own right.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.