Abstract
In this paper, we develop methods to estimate the network coverage of a TTL-bound query packet undergoing flooding on an unstructured p2p network. The estimation based on the degree distribution of the networks, reveals that the presence of certain cycle-forming edges, that we name as cross and back edges, reduces the coverage of the peers in p2p networks and also generate a large number of redundant messages, thus wasting precious bandwidth. We therefore develop models to estimate the back/cross edge probabilities and the network coverage of the peers in the presence of these back and cross edges. Extensive simulation is done on random, power-law and Gnutella networks to verify the correctness of the model. The results highlight the fact that for real p2p networks, which are large but finite, the percentage of back/cross edges can increase enormously with increasing distance from a source node, thus leading to huge traffic redundancy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.