Abstract
Polynomials with an exponential equivalent to the extent of a characteristic partition and coefficients proportional to the multiplicity/occurrence of the accompanying partition are termed as counting polynomials. These polynomials are a well-known method for describing a chemical graph’s molecular invariants as polynomials. It is possible to deduce several key topological invariants from polynomials by either directly taking their value at a certain point or by calculating derivatives or integrals of the polynomial. A topological invariants is a real number correlated with a network that predicts the physico-chemical properties. Chemical modeling, drug design, and structural activity relations use invariants. This paper aims to find the counting polynomials such as Sadhana, omega, PI and theta polynomial of certain graphene nanostructures. In furthermore, topological invariants of specific graphene nanostructures that are related to these counting polynomials are investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.