Abstract
We explore several new converse bounds for classical communication over quantum channels in both the one-shot and asymptotic regimes. First, we show that the Matthews-Wehner meta-converse bound for entanglement-assisted classical communication can be achieved by activated, no-signalling assisted codes, suitably generalizing a result for classical channels. Second, we derive a new efficiently computable meta-converse on the amount of classical information unassisted codes can transmit over a single use of a quantum channel. As applications, we provide a finite resource analysis of classical communication over quantum erasure channels, including the second-order and moderate deviation asymptotics. Third, we explore the asymptotic analogue of our new meta-converse, the $\Upsilon$-information of the channel. We show that its regularization is an upper bound on the classical capacity, which is generally tighter than the entanglement-assisted capacity and other known efficiently computable strong converse bounds. For covariant channels we show that the $\Upsilon$-information is a strong converse bound.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.