Abstract
The entanglement-assisted classical capacity of a quantum channel is known to provide the formal quantum generalization of Shannon's classical channel capacity theorem, in the sense that it admits a single-letter characterization in terms of the quantum mutual information and does not increase in the presence of a noiseless quantum feedback channel from receiver to sender. In this work, we investigate second-order asymptotics of the entanglement-assisted classical communication task. That is, we consider how quickly the rates of entanglement-assisted codes converge to the entanglement-assisted classical capacity of a channel as a function of the number of channel uses and the error tolerance. We define a quantum generalization of the mutual information variance of a channel in the entanglement-assisted setting. For covariant channels, we show that this quantity is equal to the channel dispersion, and thus completely characterize the convergence towards the entanglement-assisted classical capacity when the number of channel uses increases. Our results also apply to entanglement-assisted quantum communication, due to the equivalence between entanglement-assisted classical and quantum communication established by the teleportation and super-dense coding protocols.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.