Abstract
Several one-step schemes for computing weak solutions of Lipschitzian quantum stochastic differential equations (QSDE) driven by certain operator-valued stochastic processes associated with creation, annihilation and gauge operators of quantum field theory are introduced and studied. This is accomplished within the framework of the Hudson–Parthasarathy formulation of quantum stochastic calculus and subject to the matrix elements of solution being sufficiently differentiable. Results concerning convergence of these schemes in the topology of the locally convex space of solution are presented. It is shown that the Euler–Maruyama scheme,with respect to weak convergence criteria for Ito stochastic differential equation is a special case of Euler schemes in this framework. Numerical examples are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.