Abstract

Multistep schemes for computing weak solutions of Lipschitzian quantum stochastic differential equations (QSDE) driven by certain operator-valued stochastic processes associated with the basic field operators of quantum field theory are introduced and studied. This is accomplished within the framework of the Hudson–Parthasarathy formulation of quantum stochastic calculus and subject to matrix element of solution being sufficiently differentiable. Results concerning convergence of explicit schemes of class A in the topology of the locally convex space of solution are presented.Numerical examples are given.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call