Abstract

When the Helmholtz equation is discretized by standard finite difference or finite element methods, the resulting linear system is highly indefinite and thus notoriously difficult to solve, in fact increasingly so at higher frequency. The exact controllability approach (Bristeau et al., 1994) instead reformulates the problem in the time domain and seeks the time-harmonic solution of the corresponding wave equation. By iteratively reducing the mismatch between the solution at initial time and after one period, the controllability method greatly speeds up the convergence to the time-harmonic asymptotic limit. Moreover, each conjugate gradient iteration solely relies on standard numerical algorithms, which are inherently parallel and robust against higher frequencies. The original energy functional used to penalize the departure from periodicity is strictly convex only for sound-soft scattering problems. To extend the controllability approach to general boundary-value problems governed by the Helmholtz equation, new penalty functionals are proposed, which are numerically efficient. Numerical experiments for wave scattering from sound-soft and sound-hard obstacles, inclusions, but also for wave propagation in closed wave guides illustrate the usefulness of the resulting controllability methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.