Abstract

For wave propagation in a slowly varying waveguide, it is necessary to solve the Helmholtz equation in a domain that is much larger than the typical wavelength. Standard finite difference and finite element methods must resolve the small oscillatory behavior of the wave field and are prohibitively expensive for practical applications. A popular method is to approximate the waveguide by segments that are uniform in the propagation direction and use separation of variables in each segment. For a slowly varying waveguide, it is possible that the length of such a segment is much larger than the typical wavelength. To reduce memory requirements, it is advantageous to reformulate the boundary value problem of the Helmholtz equation as an initial value problem using a pair of operators. Such an operator-marching scheme can also be solved with the piecewise uniform approximation of the waveguide. This is related to the second-order midpoint exponential method for a system of linear ODEs. In this paper, we develop a fourth-order operator-marching scheme for the Helmholtz equation using a fourth-order Magnus method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.