Abstract

In this paper, we analyze planar parametric sextic curves to determine conditions for Pythagorean hodograph (PH) curves. By expressing the curves to be analyzed in the complex form, the analysis is conducted in algebraic form. Since sextic PH curves can be classified into two classes according to the degrees of their derivatives’ factors, we introduce auxiliary control points to reconstruct the internal algebraic structure for both classes. We prove that a sextic curve is completely characterized by the lengths of legs and angles formed by the legs of their Bézier control polygons. As such conditions are invariant under rotations and translations, we call them the geometric characteristics of sextic PH curves. We demonstrate that the geometric characteristics form the basis for an easy and intuitive method for identifying sextic PH curves. Benefiting from our results, the computations of the parameters of cusps and/or inflection points can also be simplified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call