Abstract

In this chapter, we consider a class of multiobjective optimization problems with inequality, equality and vanishing constraints. For the scalar case, this class of problems reduces to the class of mathematical programs with vanishing constraints recently appeared in literature. We show that under fairly mild assumptions some constraint qualifications like Cottle constraint qualification, Slater constraint qualification, Mangasarian-Fromovitz constraint qualification, linear independence constraint qualification, linear objective constraint qualification and linear constraint qualification do not hold at an efficient solution, whereas the standard generalized Guignard constraint qualification is sometimes satisfied. We introduce suitable modifications of above mentioned constraint qualifications, establish relationships among them and derive the Karush-Kuhn-Tucker type necessary optimality conditions for efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.