Abstract
AbstractIn this chapter, we consider multiobjective optimization problems with switching constraint (MOPSC). We introduce linear independence constraint qualification (LICQ), Mangasarian–Fromovitz constraint qualification (MFCQ), Abadie constraint qualification (ACQ), and Guignard constraint qualification (GCQ) for multiobjective optimization problems with switching constraint (MOPSC). Further, we introduce the notion of Weak stationarity, Mordukhovich stationarity, and Strong stationarity, i.e., W-stationarity, M-stationarity, and S-stationarity, respectively, for the MOPSC. Also, we present a survey of the literature related to existing constraint qualifications and stationarity conditions for mathematical programs with equilibrium constraints (MPEC), mathematical programs with complementarity constraints (MPCC), mathematical programs with vanishing constraints (MPVC), and for mathematical programs with switching constraints (MPSC). We establish that the M-stationary conditions are sufficient optimality conditions for the MOPSC using generalized convexity. Further, we propose a Wolfe-type dual model for the MOPSC and establish weak duality and strong duality results under assumptions of generalized convexity.KeywordsSwitching constraintsConstraint qualificationsOptimality conditionsDuality
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.